

(NEW COURSE)
Time : 2 Hours
(Pages 10)
Max. Marks : 40
--- MODEL ANSWER ---
Q.1 (A) Choose the correct alternative:
4

(1) Ans. (d) $x - 4y - 14 = 0$; $5x - y - 13 = 0$

Substitute $x = 2$ and $y = -3$ in each of the equations to verify if L.H.S = R.H.S

If L.H.S. = R.H.S for both the equations then the pair of linear equations have $x = 2$ and $y = -3$ as solution.

Proceeding like

a)

$x + y = -1$ $2 + (-3) = -1$ $-1 = -1$ $L.H.S = R.H.S$	$2x - 3y = -5$ $2(2) - 3(-3) = -5$ $4 + 9 = -5$ $13 \neq -5$ $L.H.S \neq R.H.S$
---	---

b)

$2x + 5y = -11$ $2(2) + 5(-3) = -11$ $4 - 15 = -11$ $-11 = -11$ $L.H.S = R.H.S$	$4x + 10y = 22$ $4(2) + 10(-3) = 22$ $8 - 30 = 22$ $-22 \neq 22$ $L.H.S \neq R.H.S$
---	---

c)

$2x - y = -1$ $2(2) - (-3) = -1$ $4 + 3 = -1$ $7 \neq -1$ $L.H.S \neq R.H.S$	$3x + 2y = 0$ $3(2) + 2(-3) = 0$ $6 - 6 = 0$ $0 = 0$ $L.H.S = R.H.S$
--	--

$x - 4y - 14 = 0$ $(2) - 4(-3) - 14 = 0$ $0 = 0$ $2 + 12 - 14 = 0$ $0 = 0$ $L.H.S = R.H.S$	$5x - y - 13 = 0$ $5(2) - (-3) - 13 = 0$ $= 0$ $10 + 3 - 13 = 0$ $0 = 0$ $L.H.S = R.H.S$
---	---

Thus, $x = 2$ and $y = -3$ is solution of equations $x - 4y - 14 = 0$; $5x - y - 13 = 0$


(2) Ans. (D) 1st July 2017

(3) Ans. (a)

The two roots of a quadratic equation $ax^2 + bx + c = 0$ are determined by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(4) Ans. (c)

On the X-axis, a mark is called kink mark. It is shown between the origin and the first class.

4

(B) Solve the following:

(1) Ans. Given: $L = 30, N = 50, cf = 20, f = 10$ and $h = 50 - 30 = 20$

Median is given as,

$$\begin{aligned}\text{Median} &= L + \left(\frac{\frac{N}{2} - cf}{f} \right) \times h \\ &= 30 + \left(\frac{\frac{50}{2} - 20}{10} \right) (20) \\ &= 30 + 0.5(20) \\ &= 30 + 10 = 40\end{aligned}$$

(2) Ans. Here $a = 1, t_1 = 1, t_2 = 8, t_3 = 15$

$$t_2 - t_1 = 8 - 1 = 7$$

$$t_3 - t_2 = 15 - 8 = 7$$

$$\therefore d = 7$$

(3) Ans. $m^2 - 11 = 0$

$$m^2 - (\sqrt{11})^2 = 0$$

$$(m - \sqrt{11})(m + \sqrt{11}) = 0$$

$$m - \sqrt{11} = 0 \text{ or } m + \sqrt{11} = 0$$

$$m = \sqrt{11} \text{ or } m = -\sqrt{11}$$

$\therefore \sqrt{11}$ and $-\sqrt{11}$ are roots of the equation $m^2 - 11$

(4) Ans. Sum invested = Number of shares \times MV = $50 \times 50 =$ Rs. 2500

Q.2(A) Complete the following activities:(Any TWO)

4

(1) Ans. Comparing $2x^2 + 6x - 5 = 0$ with $ax^2 + bx + c = 0$.

$$\therefore a = 2, b = \boxed{6}, c = -5$$

$$\therefore \alpha + \beta = -\frac{b}{a} = -\frac{6}{2} = \boxed{\frac{6}{2}} = \boxed{-3}$$

$$\text{and } \alpha \times \beta = \frac{c}{a} = \boxed{\frac{-5}{2}}$$

(2) Ans. $\begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix} = 3 \times \boxed{5} - \boxed{2} \times 4 = \boxed{15} - 8 = \boxed{7}$

(3) Ans. Experiment is to throw a dice and a coin simultaneously

$$S = \{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6\}$$

$$n(S) = 12$$

Condition for event A → to get head or tail and an odd number

$$A = \{H1, H3, H5\}$$

$$n(A) = 3$$

Condition for event B → To get head or tail and an even number

$$B = \{H2, H4, H6, T2, T4, T6\}$$

$$n(B) = 6$$

Condition for event C → Number on upper face is greater than 7 and tail on the coin

$$C = \{ \}$$

$$n(C) = 0$$

8

(B) Solve the following: (Any FOUR)

(1) Ans.

Class	Class Mark (xi)	Frequency fi	xi fi
0-20	10	6	60
20-40	30	4	120
40-60	50	5	250
60-80	70	7	490
80-100	90	3	270
		25	1190

$$\begin{aligned} \text{Mean} &= \frac{\sum x_i f_i}{\sum f_i} \\ &= \frac{1190}{25} \\ &= 47.6 \end{aligned}$$

$$\begin{aligned} \text{(2) Ans. } &= \frac{7}{3} \times \frac{1}{2} - \frac{5}{3} \times \frac{3}{2} \\ &= \frac{7}{6} - \frac{15}{6} \\ &= \frac{-8}{6} \\ &= -\frac{4}{3} \end{aligned}$$

(3) Ans. 'S' is the sample space.

$$S = \{1, 2, 3, 4, 5, 6\} \quad \therefore n(S) = 6$$

(i) Event A : Prime number on the upper face.

$$A = \{2, 3, 5\} \quad \therefore n(A) = 3$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\therefore P(A) = \frac{3}{6} = \frac{1}{2}$$

(ii) Event B : Even number on the upper face.

$$B = \{2, 4, 6\} \quad \therefore n(B) = 3$$

$$P(B) = \frac{n(B)}{n(S)}$$

$$\therefore P(B) = \frac{3}{6} = \frac{1}{2}$$

(4) Ans. Method I : Completing the square.

$$x^2 + 8x - 48 = 0$$

$$\therefore x^2 + 8x + 16 - 16 - 48 = 0$$

$$\therefore (x + 4)^2 - 64 = 0$$

$$\therefore (x + 4)^2 = 64$$

$$\therefore x + 4 = 8 \text{ or } x + 4 = -8$$

$$\therefore x = 4 \text{ or } x = -12$$

Method II : Factorisation

$$x^2 + 8x - 48 = 0$$

$$\therefore x^2 + 12x - 4x - 48 = 0$$

$$\therefore x(x + 12) - 4(x + 12) = 0$$

$$\therefore (x + 12)(x - 4) = 0$$

$$\therefore x + 12 = 0 \text{ or } x - 4 = 0$$

$$\therefore x = -12 \text{ or } x = 4$$

(5) Ans. 8 is the maximum frequency.

So, modal class is 10 – 18.

$$L = 10, f_1 = 8, f_0 = 3, f_2 = 5, h = 8$$

Mode is given as,

$$\begin{aligned} \text{Mode} &= L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \times h \\ &= 10 + \left(\frac{8 - 3}{2(8) - 3 - 5} \right) (8) \\ &= 10 + 5 = 15 \end{aligned}$$

Q.3 (A) Complete the following activity:(Any ONE)

3

(1) Ans.

Class (Temp. °C)	Class mark x_i	Frequency (No. of towns) f_i	Class mark × frequency $x_i f_i$
24-28	26	4	104
28-32	30	5	150
32-36	34	7	238
36-40	38	8	304
40-44	42	6	252
Total		$N = \sum f_i = 30$	$\sum x_i f_i = 1048$

$$\text{Mean} = \bar{X} = \frac{\sum x_i f_i}{\sum f_i} = \frac{1048}{30} = 34.9 \text{ °C}$$

(2) Ans. Company A : 200 shares, FV = Rs. 2 Premium = Rs. 18.

Company B : 45 shares, MV = Rs. 500

Company C : 1 share, MV = Rs. 10,540.

Company A: 200 shares FV = Rs. 2

Premium = Rs. 18

MV = FV + Premium

= Rs. 2 + 18

= Rs. 20

Sum invested = No. of shares x MV

= Rs. 200 x 20

= Rs. 4000 (I)

Company B: 45 shares MV = Rs. 500

Sum invested = No. of shares MV = Rs. 500

Sum invested = No. of shares x MV

= Rs. 45 x 500

= Rs. 22500 (II)

Company C: 1 share, MV = Rs. 10540

Sum invested = No. of shares x MV

= 1 x Rs. 10540

= Rs. 10540 (III)

Adding (I), (II) and (III) to obtain total investment

Total investment = Rs. (4000 + 22500 +

10540)

= Rs. 37040

(B) Solve the following: (Any TWO)

6

(1) Ans. 11 term, $t_{11} = 16$ and 21 term, $t_{21} = 29$

$$\Rightarrow t_1 + (11 - 1)d = 16$$

$$a + 10d = 16 \quad (\text{I})$$

$$\Rightarrow t_1 + (21 - 1)d = 29$$

$$a + 20d = 29 \quad (\text{II})$$

Subtracting (I) & (II)

$$a + 10d = 16$$

$$a + 20d = 29$$

$$- \quad - \quad -$$

$$-10d = -13$$

$$d = \frac{13}{10}$$

Place $d = \frac{13}{10}$ in equation (I) to obtain 'a'

$$a + 10d = 16$$

$$a + 10 \left(\frac{13}{10} \right) = 16$$

$$a + 13 = 16$$

$$a = 16 - 13$$

$$a = 3$$

Therefore $a = 3$ and $d = \frac{13}{10}$

$$\begin{aligned} 41\text{th term} &= t_{41} = t_1 + (41 - 1)d \\ &= a + 40d \end{aligned}$$

$$= 3 + 40 \times \left(\frac{13}{10} \right)$$

$$= 3 + 4(13)$$

$$= 3 + 52$$

$$= 55$$

Thus, 41th term of A.P. is 55.

(2) Ans. $2x^2 - 2x + \frac{1}{2} = 0$

$$\rightarrow 4x^2 - 4x + 1 = 0$$

$$\rightarrow 4x^2 - 2x - 2x + 1 = 0$$

$$\rightarrow 2x(2x - 1) - 1(2x - 1) = 0$$

$$\rightarrow (2x - 1)(2x - 1) = 0$$

$$\rightarrow (2x - 1) = 0 \text{ or } 2x - 1 = 0$$

$$x = \frac{1}{2} \text{ or } x = \frac{1}{2}$$

$\therefore \frac{1}{2}$ and $\frac{1}{2}$ are the roots of the quadratic equation $2x^2 - 2x + \frac{1}{2} = 0$

(3) Ans. Experiment is 2-digits numbers are formed using 0, 1, 2, 3, 4, 5 without repetition of digit.
 $S = \{10, 12, 13, 14, 15, 20, 21, 23, 24, 25, 30, 31, 33, 35, 40, 41, 42, 43, 45, 50, 51, 52, 53, 54\}$
 $n(S) = 25$

Condition for event A \rightarrow The number formed is even
 $A = \{10, 12, 14, 20, 24, 30, 32, 34, 40, 42, 50, 52, 54\}$
 $n(A) = 13$

Condition for event B \rightarrow The number formed is divisible by 3

$$B = \{12, 15, 21, 30, 24, 42, 45, 51, 54\}$$

$$n(B) = 9$$

Condition for event C \rightarrow The number formed is greater than 50

$$C = \{5, 52, 53, 54\}$$

$$n(C) = 4$$

(4) Ans. MV. of shares = Rs. 1000
Rate of brokerage = 0.1%
Amount received after sale = MV – brokerage
= Rs. 1000 – 0.1%
Amount received after sale = MV – brokerage
= Rs. 1000 – 0.1% of 1000
= Rs. 1000 – 1
= Rs. 999

Q.4 Solve the following: (Any TWO)

8

(1) Ans. Saving in first month ₹ 200; Saving in second month ₹ 250;

200, 250, 300, ... this is an A.P.

Here $a = 200$, $d = 50$, Let's find n using t_n formula and then find S_n .

$$\begin{aligned}t_n &= a + (n-1)d \\&= 200 + (n-1)50\end{aligned}$$

$$= 200 + 50n - 50$$

$$1000 = 150 + 50n$$

$$150 + 50n = 1000$$

$$50n = 1000 - 150$$

$$50n = 850$$

$$\therefore n = 17$$

In the 17th month he will save ₹ 1000.

Let's find that in 17 months how much total amount is saved.

$$\begin{aligned}S_n &= \frac{n}{2} [2a + (n-1)d] \\&= \frac{17}{2} [2 \times 200 + (17-1) \times 50] \\&= \frac{17}{2} [400 + 800] \\&= \frac{17}{2} [1200] \\&= 17 \times 600 \\&= 10200\end{aligned}$$

In 17 months total saving is ₹ 10200.

(2) Ans. Suppose the speed of the car starting from A = x km/hr and the speed of the car starting from B = y km/hr.

According to the first condition, $x > y$

Both cars move in the same direction and suppose they meet at C.

In 8 hrs, first car starting from A travels $8x$ km and another car starting from B travels $8y$ km.

By first condition,

$$8x = 80 + 8y$$

$$\therefore 8x - 8y = 80$$

$$\therefore x - y = 10 \quad \text{----(i)}$$

Now, if the cars move in opposite direction from A and B, then they meet after 1 hr and 20 minutes.

$$1 \text{ hr } 20 \text{ min} = 1 + \frac{20}{60} = \frac{4}{3} \text{ hrs}$$

In $\frac{4}{3}$ hrs, car starting from A travels $\frac{4}{3}x$ km and car starting from B travels $\frac{4}{3}y$ km.

$$\therefore \frac{4}{3}x + \frac{4}{3}y = 80$$

$$\therefore x + y = 60 \quad \text{---(ii)}$$

Adding equations (i) and (ii), we get

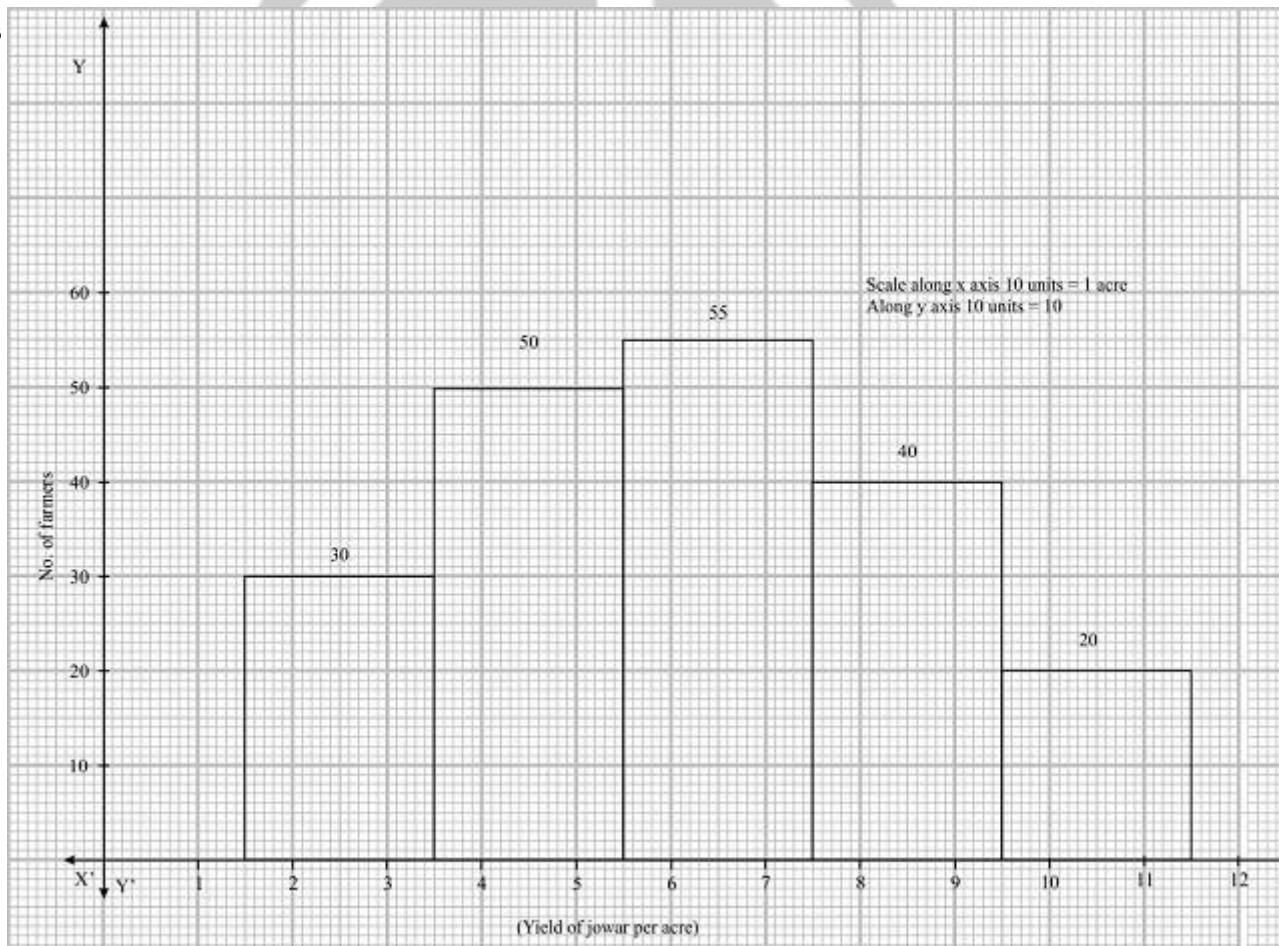
$$x - y = 10$$

$$\begin{array}{r} x + y = 60 \\ \hline \end{array}$$

$$2x = 70$$

$$\therefore x = 35$$

Substituting the value of x in equation (ii), we get


$$35 + y = 60$$

$$y = 25$$

\therefore Speed of the car starting from A = 35 km/hr

Speed of the car starting from B = 25 km/hr

(3 Ans)

Q.5 Solve the following: (Any ONE)

3

(1) Ans. Let the length of the rectangular park = x m

$$\text{Breadth} = (x-3) \text{ m}$$

$$\text{Area of rectangular park} = x(x-3) \text{ m}^2$$

$$\text{Area of isosceles triangular park} = \frac{1}{2} \times (x-3) \times 12 \text{ m}^2 = 6(x-3) \text{ m}^2$$

$$\text{As per given, } x(x-3) - 6(x-3) = 4$$

$$x^2 - 3x - 6x + 18 = 4$$

$$x^2 - 9x + 14 = 0$$

$$x^2 - 7x - 2x + 14 = 0$$

$$x(x-7) - 2(x-7) = 0$$

$$(x-7)(x-2) = 0$$

$$x = 2 \text{ or } 7 \text{ m}$$

$$\text{Length} = 7 \text{ m}$$

$$\text{Breadth} = x-3 = 7-3 = 4 \text{ m}$$

So, the breadth of the park = 4 m and its length will be 7 m.

(2) Ans. $\left(\sqrt{\frac{x}{y}}\right) = 4$

Squaring both sides,

$$\left(\sqrt{\frac{x}{y}}\right)^2 = 4^2$$

$$\frac{x}{y} = 16$$

$$x = 16y$$

$$x - 16y = 0 \dots \text{(i)}$$

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{xy}$$

Multiplying both sides by $x \cdot y$

$$xy \cdot \frac{1}{x} + xy \cdot \frac{1}{y} = x \cdot y \cdot \frac{1}{y}$$

$$y + x = 1$$

$$\therefore x + y = 1 \dots \text{(ii)}$$

Subtracting equation (ii) from (i)

$$x - 16y = 0$$

$$x + y = 1$$

$$\begin{array}{r} (-) (-) (-) \\ \hline /17y = /1 \end{array}$$

put $y = \frac{1}{17}$ in equation (i)

$$x - \frac{16}{17} = 0$$

$$x = \frac{16}{17}$$

$$\therefore x = \frac{16}{17}, y = \frac{1}{17}$$

....All The Best....

EDUTECH
A C A D E M Y

NURTURING THE FUTURE...

— SCHOOL SECTION —

CIDCO BRANCH

9168 444 999

1ST FLOOR, INFRONT OF BALIRAM PATIL SCHOOL

HARSUL-SAWANGI BRANCH

9168 044 999

1ST FLOOR, INFRONT OF PANAD SUPER MARKET