

(NEW COURSE)

Time : 2 Hours

(Pages 10)

Max. Marks : 40

--- MODEL ANSWER ---
Q.1 (A) Choose the correct alternative:

4

(1) Ans. (B) 3

 Place $x = 1$ in $4x + 5y = 19$

$$4(1) + 5y = 19$$

$$4 + 5y = 19$$

$$5y = 19 - 4$$

$$5y = 15$$

$$y = \frac{15}{5}$$

$$y = 3$$

(2) Ans. Total No's = 100

$$n(S) = 100$$

Assume Event A = getting a Prime number

$$A = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}$$

$$n(A) = 25$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{25}{100} = \frac{1}{4}$$

(C) is correct option

(3) Ans. (b)

 3 Boys can be denoted as B_1, B_2, B_3 .

 3 Girls can be denoted as G_1, G_2, G_3 .

Event A = Sample space to form committee of at most 1 boy.

$$A = \{G_1G_2, G_1G_3, G_2G_3, B_1G_1, B_1G_2, B_1G_3, B_2G_1, B_2G_2, B_2G_3, B_3G_1, B_3G_2, B_3G_3\} \quad n(A) = 12$$

(4) Ans. (a)

$$\frac{D_x}{D} = D$$

$$\frac{66}{11} = 6$$

(B) Solve the following:**(1) Ans.** 0.6, 0.9, 1.2, 1.5,First terms $t_1 = 0.6$

$$\begin{aligned}\text{Common difference 'd'} &= t_n - t_{n-1} \\ &= t_2 - t_1 \quad (\text{for } n=2) \\ &= 0.9 - 0.6 \\ &= 0.3\end{aligned}$$

 $\therefore a = 0.6$ and $d=0.3$ for A.P 0.6, 0.9, 1.2, 1.5,

.....

(2) Ans. $MV = FV + \text{Premium} = 100 + 65 = \text{Rs. } 165$.

Market value is Rs. 165 per share.

(3) Ans. The given equations are

$17x + 15y = 11 \dots (1)$

$15x + 17y = 21 \dots (2)$

Now, lets subtract equation (2) from (1)

$17x + 15y = 11$

$15x + 17y = 21$

- - -

$$\begin{array}{r} 2x - 2y = -10 \\ \hline \end{array}$$

Dividing the equations by 2.

$x - y = 5$

(4) Ans. $S = \{1, 2, 3, \dots, 49, 50\}$, $n(S) = 50$

(i) Condition for event A : number is divisible by 6.

$A = \{6, 12, 18, 24, 30, 36, 42, 48\} \quad n(A) = 8$

(ii) Condition for event B : the number on the card is a complete square.

$B = \{1, 4, 9, 16, 25, 36, 49\} \quad n(B) = 7$

Q.2(A) Complete the following activities:(Any TWO)**(1) Ans.** The following table is prepared as per steps.

Class (Percentage of marks)	Class mark x_i	Frequency (No. of students) f_i	Class mark \times frequency $x_i f_i$
0-20	10	3	30
20-40	30	7	210
40-60	50	15	750
60-80	70	20	1400
80-100	90	5	450
Total		$N = \sum f_i = 50$	$\sum x_i f_i = 2840$

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$$

$$= \frac{2840}{50}$$

$$= 56.8$$

\therefore The mean of
the percentage
= 56.8

(2) Ans. First divide the equation by 2 so that coefficient of y^2 becomes 1.

$$\rightarrow \frac{2}{2} y^2 + \frac{9}{2} y + \boxed{\frac{10}{2}} = \frac{0}{2}$$

$$\rightarrow y^2 + \frac{9}{2} y + 5 = 0$$

To solve the quadratic equation $y^2 + \frac{9}{2} y + 5 = 0$ by method of completing square, add and subtract square of the half of coefficient of 'y'

$$\text{Added/ Subtracted value} = \left(\frac{1}{2} \times \frac{9}{2} \right)^2$$

$$= \boxed{\left(\frac{9}{2} \right)^2}$$

$$\therefore y^2 + \frac{9}{2} y + \left(\frac{9}{4} \right)^2 - \left(\frac{9}{4} \right)^2 + 5 = 0$$

$$\rightarrow y^2 + 2(y) \left(\frac{9}{4} \right) + \left(\frac{9}{4} \right)^2 = - \left(\frac{9}{4} \right)^2 - 5$$

$$\rightarrow (y + \frac{9}{4})^2 = \boxed{\frac{81}{16}} - 5$$

$$\rightarrow (y + \frac{9}{4})^2 = \left(\frac{1}{4} \right)^2$$

Taking square roots

$$\rightarrow y + \frac{9}{4} = \frac{1}{4} \quad \text{or} \quad y + \frac{9}{4} = -\frac{1}{4}$$

$$\rightarrow y = \frac{1}{4} - \frac{9}{4} \quad \text{or} \quad y = -\frac{1}{4} - \frac{9}{4}$$

$$\rightarrow y = \frac{-8}{4} \quad \text{or} \quad y = \frac{-10}{4}$$

$$\rightarrow y = -2 \quad \text{or} \quad y = \frac{-5}{2}$$

$\therefore -2$ and $\frac{-5}{2}$ are roots of the quadratic equation

(3) Ans. Let us assume mean method to find mean. Let $a = 55$

Income (Rs.)	x_i	No. of farmers (f_i)	$u_i = x_i - a$	$f_i u_i$
20 – 30	25	10	-30	-300
30 – 40	35	11	-20	-200
40 – 50	45	15	-10	-100
50 – 60	55	16	0	0
60 – 70	65	18	10	180
70 – 80	75	14	20	280
		$\sum f_i = 84$		$\sum f_i u_i = 210$

$$\therefore \text{Mean} = a + \frac{\sum f_i u_i}{\sum f_i}$$

$$= 55 + \left[\frac{(-210)}{84} \right]$$

$$= 55 - 2.5$$

$$\bar{x} = 52.5$$

\therefore Mean income of farmers is Rs. 52.5 thousand or Rs. 52500

8

(B) Solve the following: (Any FOUR)

(1) Ans. Given digits : 2,3,4,7,9

Let S be the sample space

$$\therefore S = \{23, 25, 27, 29, 32, 35, 37, 39, 52, 53, 57, 59, 72, 73, 75, 79, 92, 93, 95, 97\}$$

$$\therefore n(S) = 20$$

Let Event A: The number formed is an odd number

$$\therefore A = \{23, 25, 27, 29, 35, 37, 39, 53, 57, 59, 73, 75, 79, 93, 95, 97\}$$

$$\therefore n(A) = 16$$

$$P(A) = n(A)/n(S)$$

$$= \frac{16}{20}$$

$$P(A) = \frac{4}{5}$$

(2) Ans.

Year	First Year (2015)	Second Year (2016)	Third Year (2017)	...
Salary (₹)	[1,80,000]	[1,80,000 + 10,000]		...

$$a = 1,80,000 \quad d = 10,000 \quad n = ? \quad t = 2,50,000 \text{ ₹}$$

$$t_n = a + (n-1)d$$

$$2,50,000 = 1,80,000 + (n-1) \times 10,000$$

$$(n-1) \times 10,000 = 70,000$$

$$(n-1) = 7$$

$$n = 8$$

In the 8th year her annual salary will be ₹ 2,50,000.

(3) Ans. $2y^2 + 27y + 13 = 0$
 $\rightarrow 2y^2 + 26y + y + 13 = 0$
 $\rightarrow 2y(y + 13) + 1(y + 13) = 0$
 $\rightarrow (y + 13)(2y + 1) = 0$
 $\rightarrow y + 13 = 0 \text{ or } 2y + 1 = 0$
 $\rightarrow y = -13 \text{ or } y = -\frac{1}{2}$

$\therefore -13$ and $-\frac{1}{2}$ are the roots of the equation $2y^2 + 27y + 13 = 0$

(4) Ans. GST paid at the time of purchase (Input tax)
= Rs. 1,00,500
GST paid at the time of sale (Output tax)
= Rs. 1,22,500
GST payable = Output tax - Input tax
= Rs. 1,22,500 - Rs. 1,00,500
= Rs. 22,000

(5) Ans. Take the assumed mean $A = 15$.

x	f	d = x - A	fd
5	4	-10	-40
10	5	-5	-25
15	7	0	0
20	4	5	20
25	3	10	30
30	2	15	30
Total	N = 25		$\sum fd = 15$

Mean is given as,

$$\bar{X} = A + \frac{\sum fd}{N}$$

$$= 15 + \frac{15}{25}$$

$$= 15.6$$

Q.3 (A) Complete the following activity: (Any ONE)

3

(1) Ans. Given equations are

$$6x - 4y = -12$$

$$8x - 3y = -2$$

$$D = \begin{vmatrix} 6 & -4 \\ 8 & -3 \end{vmatrix}$$

$$= 6(-3) - 8(-4)$$

$$= -18 + 32$$

$$= 14$$

$$D_x = \begin{vmatrix} -12 & -4 \\ -2 & -3 \end{vmatrix}$$

$$= -12(-3) - (-2)(-4)$$

$$= 36 - 8$$

$$= 28$$

$$D_y = \begin{vmatrix} 6 & -12 \\ 8 & -2 \end{vmatrix}$$

$$= 6(-2) - 8(-12)$$

$$= -12 + 96$$

$$= 84$$

$$x = \frac{D_x}{D}$$

$$= \frac{28}{14}$$

$$= 2$$

$$y = \frac{D_y}{D}$$

$$= \frac{84}{14}$$

$$= 6$$

(2) Ans. The given classes are not continuous. So, let us make them continuous and rewrite the table.

Class	Continuous classes	Frequency
1-3	0.5-3.5	$33 \rightarrow f_0$
4-6	3.5-6.5	$40 \rightarrow f_1$
7-9	6.5-9.5	$27 \rightarrow f_2$
10-12	9.5-12.5	18
13-15	12.5-15.5	12

From the above table, the modal class is $3.5-6.5$

$$\text{Mode} = L + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$

$$\text{Mode} = 3.5 + \left[\frac{40 - 33}{2(40) - 33 - 27} \right] \times h$$

$$= 3.5 + \left[\frac{7}{80 - 60} \right] \times 3$$

$$= 3.5 + \frac{21}{20}$$

$$= 3.5 + 1.05$$

$$= 4.55$$

6

(B) Solve the following: (Any TWO)

(1) Ans. Total number of students = 200 $n(s) = 200$
 No. of student who like kabaddi = 135
 No. of students who do not like kabaddi = $200 - 135 = 65$

Probability that the student selected doesn't like

$$\text{Kabaddi} = \frac{65}{200}$$

$$= \frac{13}{40}$$

(2) Ans. Rate of GST = 5% \therefore Rate of CGST 2.5%, and Rate of SGST = 2.5%.

$$\text{CGST} = \frac{2.5}{100} \times 545 = 13.625 = ₹ 13.63$$

$$\therefore \text{SGST} = \text{CGST} = ₹ 13.63$$

$$\begin{aligned} \text{Amount paid by the consumer} &= \text{Taxable value} + \text{CGST} + \text{SGST} \\ &= 545 + 13.63 + 13.63 \\ &= 572.26 \end{aligned}$$

Arati Gas Agency has to pay CGST = ₹ 13.63, and SGST = ₹ 13.63

$$\therefore \text{Total GST to be paid} = 13.63 \times 2 = ₹ 27.26.$$

(3) Ans. $\rightarrow m^2 - 5m + 3 = 0$
 $a = 1, b = -5, c = 3$

To solve quadratic equation $m^2 - 5m + 3 = 0$ by method of completing square add and subtract the square of half of coefficient of 'm'.

$$\therefore \text{Added/Subtracted value} = \left(\frac{5}{2}\right)^2$$

$$\rightarrow m^2 - 5m + \left(\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + 3 = 0$$

$$\rightarrow m^2 - 2(m) \left(\frac{5}{2}\right) + \left(\frac{5}{2}\right)^2 = \left(\frac{5}{2}\right)^2 - 3$$

$$\rightarrow (m - \frac{5}{2})^2 = \frac{25}{4} - 3$$

$$\rightarrow (m - \frac{5}{2})^2 = \frac{13}{4}$$

$$\rightarrow (m - \frac{5}{2})^2 = \left(\frac{\sqrt{13}}{2}\right)^2$$

Taking square roots

$$\rightarrow m - \frac{5}{2} = \frac{\sqrt{13}}{2} \text{ or } m - \frac{5}{2} = -\frac{\sqrt{13}}{2}$$

$$\rightarrow m = \frac{\sqrt{13}}{2} + \frac{5}{2} \text{ or } m = \frac{5}{2} - \frac{\sqrt{13}}{2}$$

$$\rightarrow m = \frac{5 + \sqrt{13}}{2} \text{ or } m = \frac{5 - \sqrt{13}}{2}$$

$\therefore \frac{5 + \sqrt{13}}{2}$ and $\frac{5 - \sqrt{13}}{2}$ are the roots of the quadratic equation $m^2 - 5m + 3 = 0$

(4) Ans. Experiment is 2-digits numbers are formed using 0, 1, 2, 3, 4, 5 without repetition of digit.

$$S = \{10, 12, 13, 14, 15, 20, 21, 23, 24, 25, 30, 31, 33, 35, 40, 41$$

$$42, 43, 45, 50, 51, 52, 53, 54\}$$

$$n(S) = 25$$

Condition for event A \rightarrow The number formed is even

$$A = \{10, 12, 14, 20, 24, 30, 32, 34, 40, 42, 50, 52, 54\}$$

$$n(A) = 13$$

Condition for event B \rightarrow The number formed is divisible by 3

$$B = \{12, 15, 21, 30, 24, 42, 45, 51, 54\}$$

$$n(B) = 9$$

Condition for event C \rightarrow The number formed is greater than 50

$$C = \{51, 52, 53, 54\}$$

$$n(C) = 4$$

Q.4 Solve the following: (Any TWO)

(1) Ans.

Solution: Let us assume Shefali's marks in Mathematics = x

Then her marks in English = $30-x$

As per question, $(x+2)(27-x) = 210$

$$\Rightarrow 27x - x^2 + 54 - 2x = 210$$

$$\Rightarrow 25x - x^2 + 54 - 210 = 0$$

$$\Rightarrow x^2 - 25x + 156 = 0$$

$$\Rightarrow x^2 - 12x - 13x + 156 = 0$$

$$\Rightarrow x(x-12) - 13(x-12) = 0$$

$$\Rightarrow (x-13)(x-12) = 0$$

If Shefali's marks in Mathematics = 13, then her marks in English =

17

$$(13+2)(17-3) = 15 \times 14 = 210$$

If Shefali's marks in Mathematics = 12, then her marks in English =

18

$$(12+2)(18-3) = 14 \times 15 = 210$$

(2) Ans. Number of seats in Auditorium forms an A.P

as 20, 22, 24,

Total number of rows = 27

$\therefore a = 20, d = 2, n = 27$

To find: Number of seats in 15th row i.e. t_{15}

$$t_{15} = a + (n - 1)d$$

$$t_{15} = 20 + (15 - 1)2$$

$$= 20 + 14 \times 2$$

$$= 20 + 28$$

$$= 48$$

Total number of seats in auditorium is S_{27} ,

$$S_{27} = \frac{27}{2} [2a + (27 - 1)d]$$

$$= \frac{27}{2} [2(20) + 26 \times 2]$$

$$= \frac{27}{2} [40 + 52]$$

$$= \frac{27}{2} \times 92$$

$$= 1242$$

Thus, number of seats in 15th row is 48 and total number of seats in auditorium are 1248.

(3) Ans. Let larger tap fill the tank in x hours
∴ Smaller tap will take $(x+3)$ hours

$$\text{1 hour work of larger tap} = \frac{1}{x}$$

$$\text{1 hour work of smaller tap} = \frac{1}{x+3}$$

Together they fill tank in 2 hours

$$\therefore \frac{1}{x} + \frac{1}{x+3} = \frac{1}{2}$$

$$\rightarrow \frac{x+3+x}{x(x+3)} = \frac{1}{2}$$

$$\rightarrow \frac{2x+3}{x^2+3x} = \frac{1}{2}$$

$$\rightarrow 2(2x+3) = x^2+3x$$

$$\rightarrow 4x+6 = x^2+3x$$

$$\rightarrow x^2+3x-4x-6=0$$

$$\rightarrow x^2-x-6=0$$

$$\rightarrow x^2-3x+2x-6=0$$

$$\rightarrow x(x-3)+2(x-3)=0$$

$$\rightarrow (x-3)(x+2)=0$$

$$\rightarrow x-3=0 \text{ or } x+2=0$$

$$\rightarrow x=3 \text{ or } x=-2(\text{not possible})$$

∴ Larger tap fills the tank in 3 hours and
smaller tap will take 6 hours

3

Q.5 Solve the following: (Any ONE)

(1) Ans. Let the Present age of Father be x yrs & that of son by y years.

After $(n - y)$ years son's age will be x yrs

After $(n - y)$ yrs Fathers age will be $x + (x - y)$ years

Acc to 1st Condition

$$x + (x - y) + x = 126$$

$$3x - y = 126 \dots \text{(I)}$$

$(x - y)$ yrs ago, Fathers age was y years and $(x - y)$ years ago son's age was $y - (n - y) = 2y - x$ yrs

Acc to 2nd Condition

$$y + 2y - x = 38$$

$$-x + 3y = 38 \dots \text{(II)}$$

Multiplying eq II by 3

$$-3x + 9y = 114 \dots \text{(III)}$$

Adding eq II & III

$$-3x + 9y = 114$$

$$3x - y = 126$$

$$8y = 240$$

$$\therefore y = 30$$

Sub Value of y in eqn I

$$3x - 30 = 126$$

$$3x = 156$$

$$x = 52$$

The Present age of fathers is 52 yrs & That of son is 30 yrs

(2) Ans.

Time (in min)	No. of persons (f)
30 - 40	4
40 - 50	$6 \leftarrow f_1$
50 - 60	$19 \leftarrow f_m$
60 - 70	$14 \leftarrow f_2$
70 - 80	8
80 - 90	7
90 - 100	2

Class 50-60 has the maximum frequency 19.

∴ 50-60 is the modal class.

Here, $L=50$, $f_m=19$, $f_1=6$, $f_2=14$, $h=10$.

$$\begin{aligned} \text{Mode} &= L + \left[\frac{f_m - f_1}{2f_m - f_1 - f_2} \right] h = 50 + \frac{19 - 6}{2(19) - 6 - 14} \times 10 \\ &= 50 + \frac{13}{38 - 20} \times 10 \\ &= 50 + \frac{13 \times 10}{18} \\ &= 50 + 7.22 \\ &= 57.22 \end{aligned}$$

Ans. Modal time for watching a TV by a person is 57.22 minutes.

....All The Best....

EDUTECH
A C A D E M Y

NURTURING THE FUTURE....

— SCHOOL SECTION —

CIDCO BRANCH

9168 444 999

1ST FLOOR, INFRONT OF BALIRAM PATIL SCHOOL

HARSUL-SAWANGI BRANCH

9168 044 999

1ST FLOOR, INFRONT OF PANAD SUPER MARKET