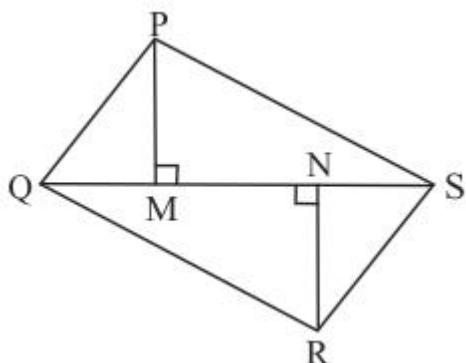

(NEW COURSE)
Time : 2 Hours
(Pages 6)
Max. Marks : 40

Note :-

- (i) All questions are compulsory.
- (ii) Use of calculator is not allowed.
- (iii) Total marks are shown on the right side of the question.

Q.1 (A) Choose the correct alternative:
4

- (1) In $\triangle PQR$, seg PM is a median. $PM = 7$ and $PQ^2 + PR^2 = 340$. Find QR .
 - (a) 16 units
 - (b) 22 units
 - (c) 11 units
 - (d) 32 units
- (2) If a tangent has to be drawn to a circle without using centre, a _____ is drawn in a circle.
 - (a) circle
 - (b) tangent
 - (c) rectangle
 - (d) triangle
- (3) In $\triangle ABC$, $DE \parallel BC$. In the figure the value of x is _____.


- (a) 1
- (b) 3
- (c) -1
- (d) -3

- (4) The ratio of circumference and area of a circle is 2:7. Find its circumference.

- (A) 14π
- (B) $\frac{7}{\pi}$
- (C) 7π
- (D) $\frac{14}{\pi}$

(B) Solve the following:
4

- (1) In figure below, $PM = 10$ cm $A(\triangle PQS) = 100$ sq. cm $A(\triangle QRS) = 110$ sq. cm then find NR .

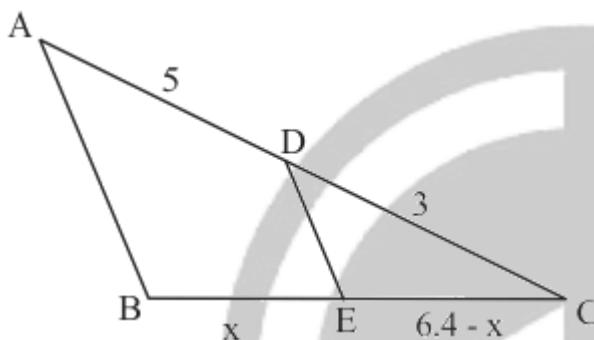
- (2) The ratio of corresponding sides of similar triangles is 3 : 5, then find the ratio of their areas.

(3) Find the Y -co-ordinate of the centroid of a triangle whose vertices are (4, -3), (7, 5) and (-2, 1).

(4) Prove the following: $\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$

Q.2(A) Complete the following activities:(Any TWO)

4


(1) Complete the following activity to prove: $\cot \theta + \tan \theta = \operatorname{cosec} \theta \times \sec \theta$

$$\text{L.H.S.} = \cot \theta + \tan \theta$$

$$\begin{aligned} &= \frac{\cos \theta}{\sin \theta} + \frac{\square}{\cos \theta} = \frac{\square + \sin^2 \theta}{\sin \theta \times \cos \theta} \\ &= \frac{1}{\sin \theta \times \cos \theta} \quad \because \square = \frac{1}{\sin \theta} \times \frac{1}{\cos \theta} \\ &= \square \times \sec \theta \end{aligned}$$

$$\therefore \text{L.H.S.} = \text{R.H.S.}$$

(2) In figure below A – D – C and B – E – C seg DE \parallel side AB If AD = 5, DC = 3, BC = 6.4 then find BE.

Let BE = x units [supposition]

BC = BE + CE [B – E – C]

$$\therefore 6.4 = x + CE$$

$$\therefore CE = (6.4 - x) \text{ units}$$

In $\triangle ABC$, seg DE \parallel side AB [Given]

$$\therefore \frac{AD}{DC} = \frac{BE}{EC}$$

$$\therefore \frac{5}{3} = \frac{x}{\square}$$

$$\therefore 5(6.4 - x) = 3x$$

$$\therefore \square x 5 - 5x = 3x$$

$$\therefore 6.4 x 5 = 3x + \square$$

$$\therefore \frac{6.4 \times 5}{8} = x$$

$$\therefore x = \square$$

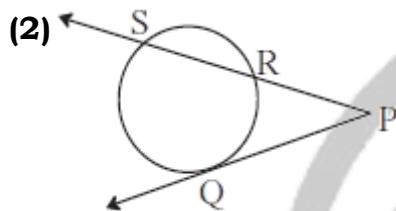
$$\therefore BE = 4 \text{ units}$$

(3) How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid sphere of radius 18 cm ?

Activity: Radius of the sphere, $r = 18$ cm
 For cylinder, radius $R = 6$ cm, height $H = 12$

$$\therefore \text{Number of cylinders can be made} = \frac{\text{Volume of the sphere}}{\boxed{\quad}}$$

$$= \frac{\frac{4}{3}\pi r^3}{\boxed{\quad}}$$

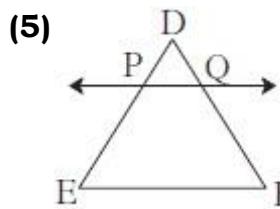
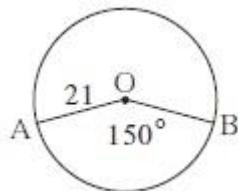

$$= \frac{\frac{4}{3}\pi \times 18 \times 18 \times 18}{\boxed{\quad}}$$

$$= \boxed{\quad}$$

(B) Solve the following: (Any FOUR)

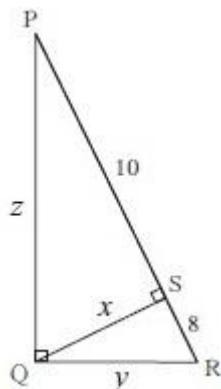
8

(1) Draw a circle of radius 3.6 cm. Draw a tangent to the circle at any point on it without using the centre.

In the figure Q is the contact point. If $PQ = 12$, $PR = 8$, then $PS = ?$

(3) In trapezium ABCD, side $AB \parallel$ side $PQ \parallel$ side DC , $AP = 15$, $PD = 14$, $QC = 14$, find BQ .



(4) The measure of a central angle of a circle is 150° and radius of the circle is 21 cm. Find the length of the arc and area of the sector associated with the central angle.

In $\triangle DEF$, line $PQ \parallel$ side EF , If $DP = 2.4$, $PE = 7.2$, $PQ = 1$ then find QF .

(1) In the figure below .In $\triangle PQR$, $\angle PQR = 90^\circ$, seg $QS \perp$ seg PR then find x, y, z .

In $\triangle PQR$, $\angle PQR = 90^\circ$, seg $QS \perp$ seg PR

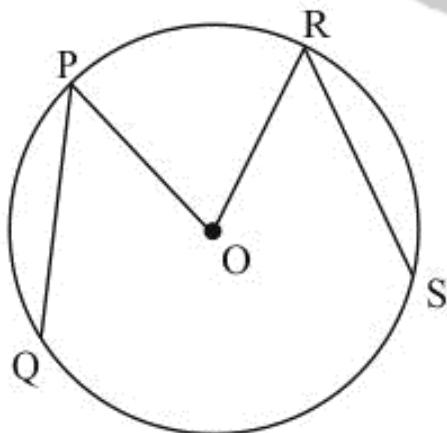
$QS = \sqrt{PS \times SR}$ (theorem of geometric mean)

$$= \sqrt{10 \times 8}$$

$$= \sqrt{5 \times 2 \times 8}$$

$$= \sqrt{5 \times 16}$$

$$= \boxed{\quad}$$


In $\triangle QSR$, by Pythagoras theorem

$$\begin{aligned} QR^2 &= QS^2 + SR^2 \\ &= (4\sqrt{5})^2 + 8^2 \\ &= 16 \times 5 + \boxed{\quad} \\ &= 80 + 64 \\ &= \boxed{\quad} \\ \therefore QR &= \boxed{\quad} \end{aligned}$$

In $\triangle PSQ$, by Pythagoras theorem

$$\begin{aligned} PQ^2 &= QS^2 + PS^2 \\ &= (4\sqrt{5})^2 + 10^2 \\ &= 16 \times 5 + 100 \\ &= 80 + 100 \\ &= \boxed{\quad} \\ &= 36 \times 5 \\ \therefore PQ &= \boxed{\quad} \end{aligned}$$

(2) In figure below, O is the centre of a circle, chord $PQ \cong$ chord RS If $\angle POR = 70^\circ$ and $(\text{arc } RS) = 80^\circ$, find

- (1) $m(\text{arc } PR)$
- (2) $m(\text{arc } QS)$
- (3) $m(\text{arc } QSR)$

$$M(\text{arc PR}) = m \angle POR$$

[Definition of measure of minor arc]

$$\therefore m(\text{arc PR}) = \boxed{\quad} \dots 1$$

Chord PQ \cong chord [Given]

$$\therefore (\square) \cong (\text{arc RS})$$

[In a circle, congruent chords have corresponding minor arcs congruent]

$$M(\text{arc PR}) + m(\text{arc RS}) + m(\text{arc PQ}) + m$$

$$(\text{arc } QS) = 360^\circ \quad [\text{Measure of a circle}]$$

$$\therefore 70^\circ + 80^\circ + 80^\circ + m(\square) = 360^\circ$$

$$\therefore m(\text{arc } QS) = 360^\circ - 230^\circ$$

$$\therefore m(\text{arc } QS) = 130^\circ \quad \dots \dots 3$$

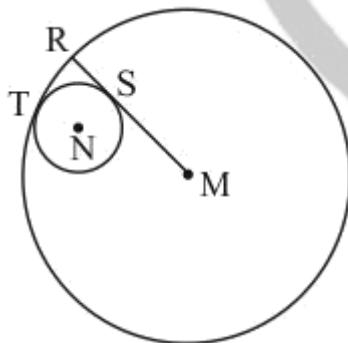
$$M(\text{arc } QSR) = m(QS) + m(\text{arc } SR)$$

[Arc addition property]

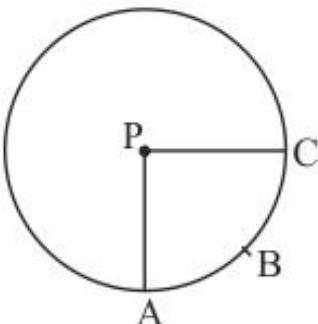
$$\therefore m(\text{arc } QSR) = 130^\circ + 80^\circ$$

$$\therefore m(\text{arc } QSR) = \boxed{}$$

(B) Solve the following: (Any TWO)


6

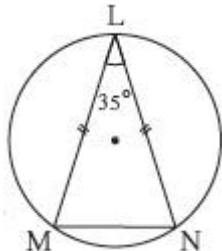
(1) The radius of a circle with centre P is 10 cm. If chord AB of the circle subtends a right angle at P, find areas of the minor segment and the major segment. ($\pi = 3.14$)


(2) Find the ratio in which point P(k , 7) divides the segment joining A(8, 9) and B(1,2). Also find k .

(3) In figure below, circle with centre M touches the circle with centre N at point T. Radius RM touches the smaller circle at S. Radii of circles are 9 cm and 2.5 cm. Find the answers to the following questions hence find the ratio MS:SR.

- (1) Find the length of segment MT
- (2) Find the length of seg MN
- (3) Find the measure of $\angle NSM$.

(4) In the figure below, If $A(P - ABC) = 154 \text{ cm}^2$ radius of the circle is 14 cm, find
 (1) $\angle APC$. (2) $l(\text{arc } ABC)$


Q.4 Solve the following: (Any TWO)

8

(1) Find the coordinates of the points which divide the line segment joining the points $(-2, 2)$ and $(6, -6)$ in four equal parts.

(2) The area of the base of a cone is 78.5 cm^2 . Its slant height is 7 cm. Find total surface area and height of the cone.


(3) In figure below, chord $LM \cong$ chord LN $\angle L = 35^\circ$ find
(i) $m(\text{arc } MN)$
(ii) $m(\text{arc } LN)$

Q.5 Solve the following: (Any ONE)

3

(1) The angle of elevation of a jet plane from a point on the ground is 60° . After a flight of 30 sec, the angle of elevation changes to 30° . If the jet plane is flying at a constant height of $3600\sqrt{3}\text{m}$, find the speed of the jet plane.

(2) In the given figure, ΔPQR is right angled at Q and the points S and T trisect the side QR. Prove that $8PT^2 = 3PR^2 + 5PS^2$

....All The Best....**EDUTECH**
ACADEMY

NURTURING THE FUTURE....

— SCHOOL SECTION —**CIDCO BRANCH**9168 444 9991ST FLOOR, INFRONT OF BALIRAM PATIL SCHOOL**HARSUL-SAWANGI BRANCH**9168 044 9991ST FLOOR, INFRONT OF PANAD SUPER MARKET